Proof Planning and Program Synthesis: a Survey

Julian Richardson
Dependable Systems Group
Department of Computing & Electrical Engineering, Heriot-Watt University, Edinburgh, Scotland
email: julianr@cee.hw.ac.uk

Introduction

Proof planning is a knowledge-based automated theo-
rem proving technique. It has been applied to a number
of theorem-proving domains, for example: mathemat-
ical induction (Bundy et al.1991), and hardware veri-
fication (Cantu et al.1996) (to pick two of the many).
In the domain of program synthesis, it has been used
to automate the synthesis of logic (Kraan et al.1993a,
Kraan et al.1993b, Basin et al.1993, Kraan 1994,
Wiggins 1994, Lacey et al.2000, Lacey 1999), func-
tional (Armando et al.1999, Armando et al.1998,
Smaill & Green 1996, Richardson 1995), and impera-
tive (Stark & Ireland 1999) programs. Program syn-
thesis is difficult, and its automation is a good demon-
stration of the power and potential of proof planning.

In this paper, we survey previous work on applying
proof planning to program synthesis. This survey is
not necessarily exhaustive — we have inevitably inad-
vertently overlooked a paper or two. Due to space con-
siderations we completely omit any comparison with
previous or other related non-proof planning synthesis
research.

In the following sections we first say a few words
about proof planning, then summarise previous work
applying proof planning to program synthesis, paying
particular attention to the following: specification lan-
guage and synthesis mechanism, language of derived
programs, domain, platform, and level of automation.

We contemplate the successes and difficulties of the
different approaches, and speculate on directions for
further research.

Proof Planning

A major problem in automated theorem proving is
search control. When automatically constructing a
formal proof, there are typically many inference rules
which can be applied at any given point during the
proof, and proofs are normally quite deep. The search
space of possible proof attempts is therefore very large.
The techniques described in this paper give us the tools
to tackle the search problem effectively by building a

Copyright © 2002, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

proof in an abstraction of the proof search space, pro-
viding powerful techniques such as rippling and facili-
tating the encoding of heuristics.

Proof planning (Bundy 1991) can reduce the size of
the proof search space because the steps (methods) from
which a proof plan is constructed are larger than those
from which the object level proof is constructed, and
because formulae are annotated to provide guidance
for the theorem proving process. The methods encode
proof construction heuristics.

A full introduction to proof planning is out of
the scope of this paper. Readers are referred to
(Bundy 1996) or (Bundy 2000).

Application of Proof Planning to
Program Synthesis

In the following subsections, we present a brief sum-
mary of previous work applying proof planning to pro-
gram synthesis.

Synthesis of Functional Programs using
Constructive Logic

In (Armando et al.1999, Armando et al.1998,
Smaill & Green 1996), programs are specified as
V3 conjectures using Martin-Lof’s constructive type
theory (Martin-Lof 1979). For example, the following
is a specification of an integer square root function:

Vzodr.zo > r*xrin nat Axg < (r+1) % (r + 1) in nat

A proof of such a specification yields a program as a
consequence of the proofs-as-programs correspondence.
Each proof rule applied has a corresponding program
construction rule. When a complete proof has been
found, its corresponding program extraction rules are
applied in order to derive a program that satisfies the
specification.

Construction of proof plans for such conjectures re-
lies on heuristics to select an appropriate induction
scheme from a library of induction schemes, and rip-
pling to prove the step case arising from application
of the chosen induction scheme. A technique called
piecewise fertilisation was developed by Armando et
al. (Armando et al.1999) and used in the synthe-
sis of a unification algorithm. Middle-out reasoning

(Hesketh et al.1992, Kraan et al.1993b) is required at
points in the proof in order to select existential wit-
nesses. In middle-out reasoning, meta-variables which
occur in formulae are successively instantiated as a side-
effect of subsequent proof planning steps. For example,
existentially quantified variables in a conjecture are of-
ten replaced by meta-variables. Middle-out reasoning
effectively allows the choice of existential witness to be
delayed until later in the proof. The presence of meta-
variables means that applying a method to a meta-level
sequent requires unification, not just matching. A proof
critic (Ireland 1992, Ireland & Bundy 1996) was devel-
oped in order to make an appropriate choice of existen-
tial witness when carrying out a proof by cases (which
corresponds in the synthesised program to a case state-
ment).

The majority of the programs synthesised were sim-
ple list manipulation and arithmetic functions. Ar-
mando et al. (Armando et al.1998) automated the syn-
thesis of a decision procedure for propositional logic,
and partially automated the synthesis of a unification
algorithm (Armando et al.1999), the largest program
synthesis example yet tackled using proof planning.

In (Richardson 1995), functions operating over com-
plex datatypes (e.g. queues, difference lists, binary
numbers) are synthesised from specifications in terms
of simple datatypes (lists, unary numbers). The syn-
thesis employed a difference matching strategy.

Synthesis of Logic Programs in
Constructive Logic

Wiggins (Wiggins 1994) adapted the use of constructive
logic for the synthesis of functional programs described
in Section above to specify and synthesise logic pro-
grams. Logic programs are specified as assertions that
the specifying relation is decidable. Wiggins defined a
constructive logic analogous to Martin-Lof’s in which
proof rules are tied to associated program extraction
rules.

Synthesis of Logic Programs by
Metavariable Instantiation

In (Kraan et al.1993a, Kraan et al.1993b,
Basin et al.1993, Kraan 1994), logic programs are
specified as a logical equivalence between an unexe-
cutable specification and a higher-order existentially
quantified variable: VZspec(Z) +» (Prog T). In the
course of a proof of such an equivalence, some proof
steps instantiate the meta-variable as a side-effect.
When a complete proof of the equivalence has been
constructed, the meta-variable has been instantiated
to a complete program. Proof steps which instantiate
the meta-variable must be restricted in order to ensure
that the resulting program is executable.

First-order predicate logic was implemented in Clam,
and methods were developed to implement unfolding,
and rippling in the context of multiple propositional
connectives. Middle-out reasoning was achieved using

an algorithm for the unification of higher-order pat-
terns (Nipkow 1993) which produces unique most gen-
eral unifies and is guaranteed to terminate. Kraan pro-
posed, but did not implement, a technique of middle-
out induction, which has the potential to create new
induction schemes.

Kraan’s work was reimplemented and extended by
Lacey et al. (Lacey et al.2000, Lacey 1999). The
higher-order features of AClam (Richardson et al.1998)
simplified the proof planning methods, and enabled
higher-order logic programs to be synthesised as well
as first-order logic programs.

Kraan’s examples, largely also implemented by
Lacey, cover list predicates (e.g. subset, mazlist, count)
and arithmetic predicates (e.g. quotient-remainder,
even, double). Lacey added some similar first-order
examples (replicate, front, frontn, subsetn), and some
higher-order examples, e.g. listE (find elements of a
list which satisfy a given predicate), all-hold (true if
and only if every element of a list satisfies a predicate).
He also synthesised general higher-order relations over
natural numbers and lists which take base and recur-
sion step as arguments. It was envisaged that these
higher-order relations would be used as components in
component-based synthesis.

Both pieces of research employed standard (func-
tional) rippling algorithms to carry out inductive
proofs. In general it is necessary to use relational rip-
pling (Bundy & Lombart 1995) to carry out rippling in
the presence of relations.

Synthesis of Imperative Programs

Based on Gries style “development of a program
and its proof hand in hand”, Stark and Ireland
(Stark & Ireland 1999) implemented a system, based
on Clam, for synthesis of imperative programs. The
program is specified in Floyd/Hoare logic using pre-
and postconditions: {Pre}C{Post}, where C is the
unknown program, represented by a meta-variable, for
example {z = g Axzg > 0}C{zg > T 7 Axpg <
(r4+1)*(r+1)} specifies that the program C should com-
pute the integer square root function. Applications of
Floyd-Hoare proof rules gradually instantiate the meta-
variable C. Clam was extended with a partial-order
planning algorithm in order to deal with the simulta-
neous goal problem (Sussmann anomaly), encountered,
for example, in the swap example.

A number of arithmetic programs were synthesised
(swap, double and swap, double, cube, maz, not, ifswap,
exp, sumodd, sum-of-sum).

Synthesis of Parallel ML Programs using
Algorithmic Skeletons

Cook (Cook Forthcoming, Cook et al.Forthcoming)
employed AClam to synthesise transformation rules for
use within a parallelising ML compiler. Transformation
rules are constructed whose left hand side is a program
fragment selected from an ML program for parallelisa-
tion based on performance analysis. An equivalent pro-

gram fragment is then synthesised which makes max-
imum use of higher-order algorithmic skeletons, which
are known to be parallelisable. This synthesised pro-
gram fragment forms the right hand side of the trans-
formation rule. A strong point of this work was the
analysis of the proof planning search space.

Cook’s system synthesised some parallel arithmetic
and sorting functions, including a parallel matrix mul-
tiplication function.

Discussion

In this section, we identify a number of challenges aris-
ing from the work previously described.

Domain

Most of the work surveyed in this paper synthesised
programs carrying out elementary arithmetic and list
manipulation operations. These examples were effec-
tive for developing and illustrating new proof planning
techniques, in particular choosing an appropriate in-
duction scheme, carrying out the subsequent inductive
proof, and applying middle-out reasoning. The pro-
grams synthesised are, however, relatively few and rel-
atively small.

A significant exception to this is the work of Armando
et al. in synthesising a decision procedure over propo-
sitional formulae and a unification algorithm for first-
order terms. These examples required the development
of new methods to make the proof plan for induction
more robust and suitable for synthesis examples.

In addition to axioms, conjectures, definitions etc,
the term “domain theory” in a proof planning context
also concerns domain meta-theory, as implemented in
proof planning methods. While some domain meta-
theory is successfully retained between proof planning
implementations — notably the meta-theory of induc-
tion (induction selection, rippling, fertilisation etc) —
much is lost because it is intimately tied up with its
implementation in proof planning methods and not de-
scribed independently of its implementation.

The lack of an agreed domain has several effects:

1. Other work in the synthesis community, e.g.
(Smith 1990, Lowry et al.1994) suggests that pro-
gram synthesis can be made effective when the ax-
ioms and theorem proving mechanisms are tuned for
a particular domain.

Armando et al. suggest that programs which reason

about terms form a suitable domain.

2. Work inevitably concentrates more on development
of the framework for synthesis than on exploiting that
framework.

3. Comparison with other work in the synthesis com-
munity is difficult.

Separation of Synthesis Methods from
Proof Planning

Much of the previous work in this area involved the con-
struction of a new proof planner, or significant adapta-

tion of an existing one. This was perhaps due to the
fact that each new piece of research tackled synthesis
of a different kind of program: functional, first-order
logic, higher-order logic, parallel, or imperative. The
proof planning methods developed during each succes-
sive research project were to some degree specific to the
kind of program being synthesised. An effort should be
made to pull together the techniques which have already
been developed: middle-out induction, piecewise fertil-
isation, difference matching, relational rippling, appli-
cation of different unification algorithms to middle-out
reasoning, partial-order planning, proof critics.

Search Control

Proof planning can provide some control over the huge
search spaces encountered in automated theorem prov-
ing. In automating program synthesis, we encounter
search spaces which are often infinite, due to the extra
branching points introduced when choosing program
fragments.

Methodologically, much of the synthesis work de-
scribed in this paper has proceeded by:

e Formulate a proof plan (i.e. set of proof planning
methods) for verification of the chosen kind of pro-
gram.

e Turn this into a synthesis proof plan by replacing the
program to be synthesised by a higher-order meta-
variable and verifying it. The program is instantiated
by middle-out reasoning during proof planning.

e Adjust the methods and planner to cope with the
search problems which arise during middle-out rea-
soning.

While middle-out reasoning provides an excellent way
of converting a verification proof plan into a synthe-
sis proof plan, controlling the instantiation of meta-
variables is a particular problem.

The problem is exacerbated by the practice of rep-
resenting meta-variables using the variables of a logic
programming language, and using the unification algo-
rithm of the logic programming language to implement
middle-out reasoning. Variable instantiation is thereby
delegated to the programming language and becomes
invisible to the theorem prover unless extra-logical fea-
tures (var/1 in Prolog, flex/1 in AProlog) are used.
The problem is a variant of the classic meta-interpreter
problem of ground/non-ground representations of vari-
ables. As in meta-interpreters, a non-ground represen-
tation should be used. Instantiation of meta-variables
can then better be placed under control of the proof
planner.

Future Directions

e Domain theory and challenge problems. The
formalisation of domain theory is a significant effort
in any program synthesis effort. In proof planning,
in addition to axioms and specifications (object-level

theory), it is necessary to formalise meta-level theory
(as proof planning methods and strategies).

Many other fields, for example first-order theorem
proving and Al planning have benefitted from the es-
tablishment of a common representation for problems
and axiomatisations, and a repository of conjectures
and problem axiomatisations (e.g. the TPTP (Thou-
sands of Problems for Theorem Provers) library, and
PDDS (Problem Domain Definition Language) and
associated problems used in the AIPS planning com-
petition). The field of program synthesis would also
benefit from a similar repository, both of object-level
and meta-level theory. The repository could be held
in MBase (Kohlhase & Franke 2000).

¢ Evaluation and comparison with other pro-
gram synthesis research.

e Establishment of a robust, scalable plat-
form for program synthesis in proof planning.
Such a platform should incorporate techniques de-
veloped in previous research. Some ideas for ex-
tending the use of logic programming frameworks
(Flener et al.2000) in order to increase the scalability
of proof planning program synthesis can be found in
(Flener & Richardson 1999).

e Control of meta-variable instantiation. Re-
search should be carried out into techniques, for ex-
ample reasoning with constraints, for the control of
meta-variable instantiation.

Acknowledgements

First, thankyou to Andrew Ireland for his inciteful com-
ments. Thanks also to Pierre Flener for his invaluable
input. Finally, thanks to previous researchers in the
field of program synthesis, both for the contributions
listed in this bibliography, and for many productive dis-
cussions over the years.

References

Armando, A.; Gallagher, J.; Smaill, A.; and Bundy, A.
1998. Automating the synthesis of decision procedures
in a constructive metatheory. Annals of Mathematics
and Artificial Intelligence 22(3-4):259-279. also avail-
able as Research Paper no. 934, DAI, University of
Edinburgh.

Armando, A.; Smaill, A.; and Green, I. 1999. Au-
tomatic synthesis of recursive programs: The proof-
planning paradigm. Automated Software Engineering
6(4):329-356.

Basin, D.; Bundy, A.; Kraan, I.; and Matthews, S.
1993. A framework for program development based
on schematic proof. In Proceedings of the 7th Interna-
tional Workshop on Software Specification and Design
(IWSSD-93). Also available as Max-Planck-Institut
fiir Informatik Report MPI-1-93-231 and Edinburgh
DATI Research Report 654.

Bundy, A., and Lombart, V. 1995. Relational rippling:
a general approach. In Mellish, C., ed., Proceedings of
IJCAI-95, 175-181. 1JCAL

Bundy, A.; van Harmelen, F.; Hesketh, J.; and Smaill,
A. 1991. Experiments with proof plans for induction.
Journal of Automated Reasoning 7:303-324. Farlier
version available from Edinburgh as DAI Research Pa-
per No 413.

Bundy, A. Proof planning FAQ. http://dream.dai.ed.
ac.uk/projects/proof-plans-faq.html.

Bundy, A. 1991. A science of reasoning. In Lassez, J.-
L., and Plotkin, G., eds., Computational Logic: Essays
in Honor of Alan Robinson, 178-198. MIT Press. Also
available from Edinburgh as DAT Research Paper 445.

Bundy, A. 1996. Proof planning. In Drabble, B.,
ed., Proceedings of the 3rd International Conference
on AI Planning Systems, (AIPS) 1996, 261-267. also
available as DAI Research Report 886.

Cantu, F.; Bundy, A.; Smaill, A.; and Basin, D. 1996.
Experiments in automating hardware verification us-
ing inductive proof planning. In Srivas, M., and Camil-
leri, A., eds., Proceedings of the Formal Methods for
Computer-Aided Design Conference, number 1166 in
Lecture Notes in Computer Science, 94-108. Springer-
Verlag.

Cook, A.; Ireland, A.; and Michaelson, G. Forthcom-
ing. Higher order function synthesis through proof
planning. In Feather, M., and Goedicke, M., eds.,
Proceedings of 16th IEEE International Conference
on Automated Software Engineering, ASE’01. TEEE
Computer Society.

Cook, A. Forthcoming. Using proof in transformation
synthesis for automatic parallelisation. Ph.D. Disser-
tation, Department of Computing and Electrical En-
gineering, Heriot-Watt University.

Flener, P., and Richardson, J. D. C. 1999. A uni-
fied view of programming schemas and proof methods.
In LOPSTR °99: Preproceedings of the Ninth Inter-
national Workshop on Logic Program Synthesis and
Transformation, Technical Report CS-99-16, Univer-
sity of Venice, Venice, Italy, September 1999, 75-82.

Flener, P.; Lau, K.-K.; Ornaghi, M.; and Richardson,
J. 2000. An abstract formalisation of correct schemas
for program synthesis. Journal of Symbolic Computa-
tion 30(1):93-127.

Hesketh, J.; Bundy, A.; and Smaill, A. 1992. Using
middle-out reasoning to control the synthesis of tail-
recursive programs. In Kapur, D.; ed., 11th Interna-
tional Conference on Automated Deduction, 310-324.
Published as Springer Lecture Notes in Artificial In-
telligence, No 607.

Treland, A., and Bundy, A. 1996. Productive use of
failure in inductive proof. Journal of Automated Rea-
soning 16(1-2):79-111. Also available from Edinburgh
as DAT Research Paper No 716.

Ireland, A. 1992. The Use of Planning Critics in

Mechanizing Inductive Proofs. In Voronkov, A.; ed.,
International Conference on Logic Programming and
Automated Reasoning — LPAR 92, St. Petersburg, Lec-
ture Notes in Artificial Intelligence No. 624, 178-189.
Springer-Verlag. Also available from Edinburgh as
DAI Research Paper 592.

Kohlhase, M., and Franke, A. 2000. Mbase: Repre-
senting knowledge and context for the integration of
mathematical software systems.

Kraan, I.; Basin, D.; and Bundy, A. 1993a. Logic
program synthesis via proof planning. In Lau, K. K.,
and Clement, T., eds., Logic Program Synthesis and
Transformation. Springer-Verlag. 1-14. Also available
as Max-Planck-Institut fiir Informatik Report MPI-I-
92-244 and Edinburgh DAI Research Report 603.

Kraan, I.; Basin, D.; and Bundy, A. 1993b. Middle-
out reasoning for logic program synthesis. In War-
ren, D. S., ed., Proceedings of the Tenth International
Conference on Logic Programming. MIT Press. Also
available as Max-Planck-Institut fiir Informatik Re-
port MPI-1-93-214 and Edinburgh DAI Research Re-
port 638.

Kraan, I. 1994. Proof Planning for Logic Program
Synthesis. Ph.D. Dissertation, Department of Artifi-
cial Intelligence, University of Edinburgh.

Lacey, D.; Richardson, J. D. C.; and Smaill, A. 2000.
Logic program synthesis in a higher order setting. In
Proceedings of the First International Conference on
Computational Logic (CL2000), volume 1861 of Lec-
ture Notes in AL Springer Verlag. 912-925.

Lacey, D. 1999. Logic program synthesis via proof
planning using AClam. Master’s thesis, Division of
Informatics.

Lowry, M.; Philpot, A.; Pressburger, T.; and Under-
wood, I. 1994. Amphion: Automatic programming for
scientific subroutine libraries. In Proc. 8th Intl. Symp.
on Methodologies for Intelligent Systems.

Martin-Lof, P. 1979. Constructive mathematics and
computer programming. In 6th International Congress
for Logic, Methodology and Philosophy of Science,
153-175. Published by North Holland, Amsterdam.
1982.

Nipkow, T. 1993. Functional unification of higher-
order patterns. In Vardi, M., ed., Fighth Annual IEEE
Symposium on Logic in Computer Science, 64-74.

Richardson, J.; Smaill, A.; and Green, I. 1998. Sys-
tem description: proof planning in higher-order logic
with AClam. In Kirchner, C., and Kirchner, H., eds.,
15th International Conference on Automated Deduc-
tion, volume 1421 of Lecture Notes in Artificial Intel-
ligence.

Richardson, J. D. C. 1995. Automating changes of
data type in functional programs. Research Paper
767, Dept. of Artificial Intelligence, University of Edin-
burgh. A shorter version appears in Proceedings of the

10th Conference on Knowledge-Based Software Engi-
neering (KBSE).

Smaill, A., and Green, I. 1996. Higher-order anno-
tated terms for proof search. Technical report, Dept.
of Artificial Intelligence, University of Edinburgh. Also
in “Theorem Proving in Higher Order Logics”, von
Wright, J,. ed, Springer, 1996, pp 399-414.

Smith, D. R. 1990. KIDS: A semiautomatic program
development system. Transactions on Software Engi-
neering 6(9).

Stark, J., and Ireland, A. 1999. Towards automatic
imperative program synthesis through proof planning.
In 14th Conference on Automated Software Engineer-
ing, ASE’99.

Wiggins, G. A. 1994. Whelk type theory. In Turini, F.,
and Fribourg, L., eds., Proceedings of the Fourth In-
ternational Workshop on Meta-Programming in Logic

and Logic Program Synthesis and Transformation,
Pisa, Italy, LNCS. Springer-Verlag, Heidelberg.

